Math 206A Lecture 13 Notes

Daniel Raban

October 26, 2018

1 Balinski's Theorem and Associahedra

1.1 Balinski's theorem

Definition 1.1. A graph G = (V, E) is called *k*-connected if for every (k - 1) vertices $v_1, \ldots, v_{k-1}, G \setminus \{v_1, \ldots, v_{k-1}\}$ is connected.

Theorem 1.1 (Balinski). For every convex polytope $P \subseteq \mathbb{R}^d$ with $\dim(P) = d$, $\Gamma = \Gamma(P)$ is *d*-connected.

For d = 2, the graph is a cycle, so removing a vertex does not disconnect the graph.

Proof. Suppose $X = \{v_1, \ldots, v_{d-1}\} \subseteq V(P)$. Choose any vertex $z \in V \setminus X$. Let H be a hyperplane spanned by $X \cup \{z\}$. Let $\psi : \mathbb{R}^d \to \mathbb{R}$ be a linear function such that $\psi(v_i) = \psi(z) = 0$, and let ψ' to be a small perturbation of ψ which is nonconstant on H. Let u be the vertex maximizing φ and w be the vertex minimizing φ . Also, let $H_- = \{x \in V : \psi'(x) < 0\}$ and $H_+ = \{y \in V : \psi'(y) > 0\}$.

If we start at $y \in H_+$ and travel along edges where ψ' is increasing, we end up at u. If we start at $x \in H_-$ and travel along edges where ψ' is decreasing, we end up at w. So we know that H^+ and H_- are connected. We claim that z is connected to both u and w. Depending on our choice of perturbation φ , $\varphi(z) > 0$, in which case z is connected to H_+ , or $\varphi(z) < 0$, in which case z is connected to H_- .

1.2 Associahedra

Fix $n \ge 3$, and construct the graph $\Gamma = (V, E)$, where V is the set of triangulations of an n-gon $(|V| = \binom{2n}{n}/(n+1)$, the *n*-th Catalan number) and E is the set of triangulations that differ by a flip. Here, a flip means removing an edge in the triangulation and replacing it with the opposite diagonal of the resulting quadrilateral. Then Γ is n-3 regular because an *n*-gon has n-3 diagonals.

Is Γ the graph of a simple polytope in \mathbb{R}^{n-3} ?

Example 1.1. For n = 4, we get

0-----0

For n = 5, we get the graph of a pentagon. For n = 6, the graph has 14 vertices; try to come up with it yourself!¹

Theorem 1.2. Let $\Gamma = (V, E)$ be the above graph. It is a graph of a simple polytope P_n .

Stasheff said that $\alpha(P_n)$ is the set of subdivisions of the *n*-gon by non-crossing diagonals, ordered by inclusion. K. Lee showed that yes, there exists such a polytope P_n .

Here is the Gelfan-Zelevinsky-Kapranov construction.² For each triangulation T of a fixed *n*-gon Q, let $f_T: V(Q) \to \mathbb{R}_+$ be

$$f(v) = \sum_{\bigtriangleup \ni v} \operatorname{area}(\bigtriangleup)$$

Theorem 1.3 (GZK,c.1990). For every Q, the set of f_T for all triangulations of A is the set of vertices of the associahedron P_n ; i.e. $P = \text{conv}(\{f_T\})$.

 P_n sits in \mathbb{R}^n . What linear equations does it satisfy that makes the dimension n-3? One equation is

$$\sum_{v \in V(Q)} f_T(v) = 3 \operatorname{area}(Q).$$

Theorem 1.4 (TTQ). For n > 20, diam $(\Gamma_n) = 2n - 10$.

Proving that diam $(\Gamma_n) \ge 2n - 10$ is the easier part, but diam $(\Gamma_n) \le 2n - 10$ is hard.

Adelson-Velsky-Landis³ trees: If you have a binary tree with too much depth on one side of the root, you might want to choose a different root so the tree is more balanced. This is related to triangulations of an n-gon because the dual graph of a triangulation is a binary tree.

¹There's no way I'm making a diagram for this one.

 $^{^{2}}$ The names are in this order because alphabetic order in Russian is different from alphabetic order in English.

³Adelson-Velsky is one person.